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Abstract

Traditionally climate changes have been detected from long series of observations and long

after they have happened. Our "inverse sequential" procedure, for detecting change as soon as it

occurs, describes the existing or most recent data by their frequency distribution. Its parameter(s)

are estimated both from the existing set of observations and from the same set augmented by 1, 2,

...j new observations. Individual-value probability products ("likelihoods") are used to form ratios

which yield two probabilities for erroneously accepting the existing parameter(s) as valid for the

augmented data set, and vice versa. A genuine parameter change is signalled when these

probabilties (or a more stable compound probability) show a progressive decrease. New parameter

values can then be estimated from the new observations alone using standard statistical techniques.

The inverse sequential procedure will be illustrated for global annual mean temperatures

(assumed normally distributed), and for annual numbers of North Atlantic hurricanes (assumed to

represent Poisson distributions). The procedure has been developed, but not yet tested, for linear

or exponential trends, and for chi-square means or degrees of freedom, a special measure of

autocorrelation (Radok, 1992).
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I. Introduction

The detection of changes in a developing time series requires some idea of what form they

are likely to take. When the nature of the forcing is known, f'dters can be designed that will show

their effects most clearly (Kim and North, 1991), but that knowledge is often not available in the

geophysical sciences. There are many time series which can be viewed as potentially

inhomogeneous, made up of irregular-length sections each of which differs from its neighbors in

one or more of the parameters that define its signal and noise characteristics. As long as its

parameters remain unchanged, an individual section can then be said to be in "statistical control"

(Shewhart, 1939).

There exists considerable evidence that this concept is realistic in many geophysical

contexts, for instance those exhibiting the "Hurst phenomenon" much discussed in hydrology

(e.g., Klemes, 1974). With its minimum of arbitrary assumptions, the concept of statistical

control suggests a general monitoring approach that registers the length and end of each controlled

state, together with the new parameter values. The magnitude of changes in geophysical

parameters cannot be anticipated, but their surveillance might use a probability for regarding the

parameters established from existing observations as significantly changed by the addition of one

or more new observations.

Such a "sequential" use of accruing information was pioneered by Wald (1945) and has

developed into a large special field of statistics (el. e.g., Gosh, 1988) which includes a range of

procedures utilizing cumulative sums Ccusum" techniques; e.g., Goel, 1982)). The typical
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outcome in the simplest situation is a decision, with prescribed error probabilities, to accept one of

two specified parameter values, or to continue sampling.

The "inverse" sequential approach here presented instead progressively _ "nt>

change" probabilities for parameter estimates based, respectively, on the accrued data and on the

same data augmented by one or several new observations. A parameter change is then signaled

when these probabilities begin decreasing to small values.

The basic relations for such a procedure are developed in section 2 and formulated for the

means and variances of Gaussian and Poisson vaxiates in Appendix A; mathematical derivations

can be found in a paper submitted for publication in the American Statistician, and in a project

report in preparation which will include computer programs for performing the calculations. These

are illustrated in section 3, and a well-known way of combining the probabilities for several

parameters into a change "f'mgerprint" is recalled in the last section.

2. Theory

Consider a series of m observations x i , i = 1,2,...m, to which further j observations are

added q = 1,2,...). For a parameter 0 (such as mean, variance, trend, etc.) the first m values yield

an optimum estimate 0m which the additional j observations change to Ore+ j. Writing the

corresponding probabilities of individual x as Pm and Pm+j' respectively, the likelihood function of
m m

the first m observations is lip,,, = Lm(m) when 0 = On, and ll_lPm+j = Lm+j(m) when 0 = On+j .a

Here the bracketed number indicates the number of observations in the product, while the subscript

is the number of observations used for the parameter estimate. The likelihood ratio q(m) =

Lm+j(m ) / Lm(m ) < 1 ff 0m represents an optimum estimate for the m observations. In the same

way we define Lm+j(rn+l) and Lm(m+y) for the m+j observations which yield a likelihood ratio

q(rn+j3 = Lm+j(m+J') [ Lm(m+J) > 1. The likelihoods and their ratios provide the elements for a

formal test of two hypotheses. The first, H(rn), states that 0 = 0m for the existing m observations,

while the second, H(rn+j), is 0 = On+) for the augmented set of m+j observations.
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Integration of the likelihood function Lm(m) over its m-dimensional sample space R(m)

gives the probability of accepting the hypotheses H(m) when true as 1- a, where cx is the

probability that H(m) will be rejected when the sample point falls into a remote "critical' rejection

region of the sample space, even though H(m) remains true there ("type I error"). The

corresponding integration of Lm+j(m) leads to a second probability, t, that H(m+j) is erroneously

rejected when the sample point falls in the same region; this is also the probability of accepting the

hypothesis H(m) when false ("type II error"). The integrated likelihood ratio for the m

observations thus becomes

[.11 ""Lm+j(m ) dxl dx2 ""dXm
q*(m) =Rfm) - fl (1)

III ""Zm(m) dxl dx2 ""dxm 1-Or
R(m)

Applying the same argument to the augmented set of m+j observations leads to

_H ""Lm+j(m+J) dxl dx2 ""dXm+i 1-_z'
q*(m+j) = R(m+i) - (2)

Ill ...L_+i(m) dxl dx2 ""dXm+j fl'
R(m+j)

Disregarding the slight difference between the critical regions ofR(m) and R(m+j') for the two data

sets, we can approximate ix,', the probability of rejecting H(m+j), when true, by t, the probability

of accepting H(m) when false; on a similar argument, fl' = _x, so that equation (2) takes the

approximate form

q*(m+j) = 1-.___fit (3)

For the inverse sequential procedure we replace the q* by the observed sample values q of the

likelihood ratios, and from (1) and (3) obtain two relations for estimating ¢xand t:

(1 - qm) (4a)
Ot - (qm+j - qm)

(qmt-i qm - qm) (4b)
fl = (qm+j - qm) "

Equations (1) and (3) state the familiar decision limits of Wald's (1945) sequential probability ratio

test (SPRT). Our argument in effect places the likelihood ratio q(m) on Wald's lower decision

limit, and the ratio q(m+j') on different upper decision limits. But in contrast to a SPRT, now those
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limits involve known likelihood ratios q(m) and q(m+j) and unknown probabilities t_ and ft. A

definite change of control, from 0m to On+j , is signalled when both probabilities decrease to small

values.

In practice rounding errors can raise the likelihood ratio q(m) to values larger than unity and

similarly lower q(m+j) to values below one. Equations (4) then give unrealistic probabilities that

are negative or larger than 1. Such q values may be replaced by 1, giving the probabilities the

values 0 and 1, respectively, (or 0.5 if both q are taken as 1).

For monitoring the average of the two error probabilities can be used, but a more robust

single no-change probability is defined by the ratio q(m+j)/q(m). We write

q(m+j) (l-a)(l-_ /____/2q(m) - aO - = Q" (5)

Taking square roots and solving for _leads to

), = (1 + "_/-Q)I. (6)

The probability yremains between 0 and 1/2 for q(m+j) > q(m), and can be shown to fall between

the arithmetic and geometric means of the two probabilities defined by (4a) and (4b).

Inverse sequential formulae for q(m) and q(m+j) are given in appendix A. The next section

illustrates their use for monitoring changes in Gaussian and Poisson means and variances.

3. Applications

The procedure developed in section 2, and explicitly formulated in appendix A, tests the

"null hypothesis" that the originally available data in question remain homogeneous as new data are

added. A developing inhomogeneity becomes apparent first as a progressive decrease in the "no-

change" probability 7, but that decrease will only continue all the way to small values when the

parameters for the augmented (original plus new) datadiffersignificantly from those valid for the

original data alone. Clearly parameter estimates derived solely from the new data will show such

differences well before the augmented set can do so. Therefore, the inverse sequential test is

terminated as soon as a systematic decrease in yhas been filmily established; standard statistical

procedures can then be used to compare the parameters of the original data with those derived from



thenewdatathatcausedtheprobabilitydecrease. That final step is omitted in the examples that

follow since its result in general must be assessed by geophysical considerations as well as by its

statistical significance.

As a first application we attempt to detect changes of mean and variance in two series of

global mean temperature anomalies (deviations from the long-term mean 1958-77) reported by

AngeU and Korshover (1987; updated in Boden et al., 1990). Figure la shows these data for the

surface and Figure 2a for the upper troposphere/lower stratosphere (the layer between the 100 hPa

and 300 hPa constant-pressure surfaces).

The three probabilities for the surface observations are given in Figure lb; they suggest a

change in control around 1980. The test is then continued with the new larger mean and variance

based on the observations for the years 197%83; no further control changes are evident from the

remaining data.

The probabilities for the temperature anomalies of the upper troposphere/lower stratosphere

are given in Figure 2b. No changes of control can be discerned, although the mean decreased

slightly from its initial value towards the end of the period of record used.

A second application of the inverse sequential procedure uses the annual numbers of

tropical hurricanes recorded for the North Atlantic by Case (1988; updated to 1990) as shown in

Figure 3a. The frequency distribution of these numbers for the period 1931-1990 (Figure 4)

broadly conforms to a Poisson distribution with a mean of 5.6 (dashed lines in Figure 4).

Figure 3b gives the three error probabilities. A weak change of control is suggested to

have occurred around 1940, with a decrease in the mean number to 3.8, followed by a more

distinct change to a mean number of 7.6 around 1950. A renewed decrease back to the original

mean number of 5,6 hurricanes per year is suggested by the gradual decrease of yin the early

1960s. The remaining data show no further changes of control, even when a new base period is

adopted in the 1970s in order to sharpen the test.
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4. Conclusion

The inverse sequential procedure here described represents a new approach to the

monitoring of time series, and clearly requires further experimentation and development.

Mathematical details have already been formulated for detecting changes in linear and exponential

trends, and in the means of chi-square variates which also represent their degrees of freedom and

can be used as a measure of autocorrelation (Radok, 1992). We plan to apply the full procedure to

the geophysical data provided in CD-ROM format by NASA under the Greenhouse Effect

Detection Experiment (GEDEX; Schiffer and Unimayar, 1992; Olsen and Warnock, 1992).

Another data archive to be tested is the Comprehensive Ocean Atmosphere Data Set (COADS;

Woodruff et al., 1987; Diaz and Brown, 1992).

As further steps in the procedure, the lengths of statistically controlled sections can

themselves be analyzed as a potential Poisson variate, and the independent probabilities obtained

for different variables can be combined following Fisher (1941, section 21.1) to construct

"fingerprints" of climatic change in the form of chi-square variates with 2k degrees of freedom,
k

2 = y,(.21og e _) (6)_2k d.f.
i= 1

where k is the number of independent probabilities combined.
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Figurecaptions

Figure1.Inversesequentialtestappliedto global surface temperature anomalies.

a) Annual mean deviations °C from 1958-77 mean (Angell and Korshover, 1987; updated in Boden

et al., 1990).

b) Probabilities that no parameter changes are occurring. For symbols see text.

Figure 2. Inverse sequential test applied to global temperatures of the upper troposphere/lower

stratosphere (100-300 hPa layer).

a) Annual mean deviations °C from 1958-1977 mean (Angell and Korshover, 1987; updated in

Boden et al., 1990).

b) Probabilities that no parameter changes are occurring. For symbols see text.

Figure 3. Inverse sequential test applied to hurricane numbers.

a) Annual number of North Atlantic hurricanes, 1931-1990 (Case, 1988; updated).

b) Probabilities that no change in the mean number is occurring. For symbols see text.

Figure 4. Frequency histograms of hurricane numbers (solid lines) and Poisson distribution with

mean 5.6 (dashed lines).



Appendix A: Inverse sequential formulae for means and variances of random

samples from Gaussian and Poisson distributions

The restrictions to these distributions imply a need to verify that the data arc indeed so

distributed, and to perform an appropriate transformation if they are not (as described by e.g.

Curtiss, 1943). The formulae give the basic probabilityp in the likelihood functions for rn and

m+j observations, and the likelihood ratios q(m) and q(m+j) used to calculate the probabilities tr.,

fl, and ?'from equations (4) and (6) in section 2. Subscripts indicate the number of values used for

parameter estimates, and bracketed symbols give the numbers used to calculate the likelihoods and

their ratios.

(1_ Gaussian mean and variance

The basic probability,

1 ['-(x _/./)2-

.- xpL (A1)

involves two parameters which cannot be separated in the test since in the present context neither

parameter is prescribed. As an estimate for the distribution mean/z we use the sample mean -_n;

2 is the sample variance and nthe distribution variance is estimated as _ = [n/(n-1)]s_, where s,,

(=m or m+j) the number of values used for the estimates. Then the two likelihood ratios are given

by

q(m) = ex m l°ge_(Ym+j + 1 - - 20.m2+j- (]dm+y - _2m) 2 , (A2)

and

p[ )q(rn+j) = ex (m+j) loge_ + - 1
am+j 2 _ O,2m -t-

(m +j)(t.tm+ i -/Z,n) 2"
(A3)

(2) Poisson mean (=variance)

This case is simpler because the basic probability,

_-x
p--

x! exp(£)

(A4)

has only a single parameter _, the mean number of occurrences. The likelihood ratios are

}]q(m) = ex m -x,n l°ge -_a_2 - ( "_'m +j - _'m) ,

£m

(A5)

and



q(m÷j) - ex m÷j £m+j l°ge"_m'-_ -

Xm
(£m+j " £m)}] • (A6)
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